

The exam consists of 4 questions. You have 120 minutes to do the exam. You can achieve 50 points in total which includes a bonus of 5 points.

1. [6+3=9 Points]

(a) For each of the following bifurcations, give an example of a one-parameter family of one-dimensional time-continuous systems showing the respective bifurcation, plot the bifurcation diagram and describe in words the bifurcation scenario.

- Transcritical bifurcation
- Pitchfork bifurcation

(b) For the family of planar system

$$\begin{aligned} r' &= r^3 - r, \\ \theta' &= \cos \theta - a, \end{aligned}$$

where r and θ are polar coordinates and $a \in \mathbb{R}$ is a parameter, show the bifurcation diagram in the form θ versus a and plot representative phase portraits in Cartesian coordinates.

2. [7 Points]

For a C^∞ map $f : \mathbb{R}^2 \rightarrow \mathbb{R}$, consider the family of discrete-time systems $x_{n+1} = f(x_n, a)$, $n \in \mathbb{Z}_{\geq 0}$, with parameter $a \in \mathbb{R}$. Suppose that for fixed $x_0, a_0 \in \mathbb{R}$,

- $f(x_0, a_0) = x_0$,
- $\frac{\partial f}{\partial x}(x_0, a_0) = 1$,
- $\frac{\partial^2 f}{\partial x^2}(x_0, a_0) \neq 0$, and
- $\frac{\partial f}{\partial a}(x_0, a_0) \neq 0$.

Show that the discrete-time system has a saddle-node bifurcation at (x_0, a_0) . (Hint: make use of the Implicit Function Theorem)

— please turn over —

3. [4+3+4+3=14 Points]

Consider the planar system

$$\begin{aligned} x' &= y, \\ y' &= -\nu y + x^2 - 1, \end{aligned}$$

where $\nu \geq 0$ is a parameter.

- (a) Show that the system has the two equilibrium points $(x_-, y_-) = (-1, 0)$ and $(x_+, y_+) = (1, 0)$, and determine their stability from the linearization.
- (b) Show that for $\nu = 0$, the system is Hamiltonian with Hamilton function

$$H(x, y) = \frac{1}{2}y^2 - \frac{1}{3}x^3 + x + \frac{2}{3}$$

and sketch the phase portrait in the (x, y) plane.

- (c) Show that for $\nu \geq 0$ and each $0 < h < 4/3$, H is a Lyapunov function in the region $D_h = \{(x, y) \in \mathbb{R}^2 \mid H(x, y) \leq h, x < 1\}$ and use the Lasalle Invariance Principle to show that for $\nu > 0$, the equilibrium at $(x_-, y_-) = (-1, 0)$ is asymptotically stable with D_h belonging to the basin of attraction.
- (d) Sketch the phase portrait for $\nu > 0$ by paying attention to the stable and unstable curves of the saddle at $(x_+, y_+) = (1, 0)$. What can you say about the basin of attraction of $(x_-, y_-) = (-1, 0)$.

4. [9+6=15 Points]

(a) Consider the map

$$t : [-1, 1] \rightarrow [-1, 1], \quad x \mapsto 1 - 2|x|.$$

Plot the graph of t , its second iterate t^2 and its third iterate t^3 and show by direct proof (i.e. without using a conjugacy) that the discrete-time system $x_{n+1} = t(x_n)$, $n \in \mathbb{Z}_{\geq 0}$, satisfies all three conditions of Devaney's definition of chaos.

- (b) Let $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$ be compact intervals and suppose the two discrete-time systems $x_{n+1} = f(x_n)$ and $y_{n+1} = g(y_n)$ defined by maps $f : I \rightarrow I$ and $g : J \rightarrow J$ are topologically conjugate. Show that if the discrete-time system $x_{n+1} = f(x_n)$, $n \in \mathbb{Z}_{\geq 0}$, is topologically transitive, then the discrete-time system $y_{n+1} = g(y_n)$, $n \in \mathbb{Z}_{\geq 0}$, is also topologically transitive.